Efficient Object Detection in Large Images Using Deep Reinforcement Learning

Burak Uzkent, Christopher Yeh, and Stefano Ermon Department of Computer Science, Stanford University

Detection in Large Images - Sliding Window

- No need to downsample
- Low memory requirement
- Large runtime to process each window

>1000 pixels

Proposed Method - Adaptive Sliding Window

Small objects requires fine-level information whereas large objects can be detected at coarse-level.

Policy network treats sampling each image patch as a Bernoulli random variable

$$\pi_c(a_c | x_L, \theta_p^c) = \prod_{i=1}^{P_c} (s_c^i)^{a_c^i} (1 - s_c^i)^{(1 - a_c^i)}$$
$$s_c = f_p^c(x_L; \theta_p^c)$$

Modeling the Policy Networks

Policy network treats sampling each image patch as a Bernoulli variable

$$\pi_c(a_c | x_L, \theta_p^c) = \prod_{i=1}^{P_c} (s_c^i)^{a_c^i} (1 - s_c^i)^{(1 - a_c^i)}$$
$$s_c = f_p^c(x_L; \theta_p^c)$$

Policy network is trained with policy gradient method, with advantage function

$$J_c = \mathbb{E} \left[R_c(a_c, a_d, Y) \right]$$
$$\nabla_{\theta_p^c} J_c = \mathbb{E} \left[R_c \cdot \nabla_{\theta_p^c} \log \pi_{\theta_p^c}(a_c | x_L) \right]$$

Experiments - xView

Experiments on the xView dataset, consisting of 847 very large images (>3000 x >3000 px).

								A A A A A A A A A A A A A A A A A A A	
Model/Metric	HR	AP	AR	Run-time	HR	lal	X	RUN ASTRA	- MA
Random $(5 \times)$	50	24.1	47.1	1408	31	gir			STA .
Entropy $(5 \times)$	50	25.4	47.2	1415	31	Ö			
Sliding Window-L $(5 \times)$	0	26.3	39.8	640	0				
Sliding Window-H	100	39.0	60.9	3200	100				178
Gao et al. $[7]$ (5×)	35.4	35.2	55.5	1551	31.6	-		North Carl	
Ours $(5 \times)$	35.5	38.1	59.7	1484	31.5	Vet			
Table 1 : Results on the xView test set.						CPI			

Gao, Mingfei, Ruichi Yu, Ang Li, Vlad I. Morariu, and Larry S. Davis. "Dynamic zoom-in network for fast object detection in large images." In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 6926-6935. 2018.

Experiments - Caltech Pedestrian

Experiments on the Caltech Pedestrian dataset (>800 x >800 px).

Model/Metric	AP	AR	Run-time	HR
Random (×5)	30.9	62.1	248	44.4
Entropy $(\times 5)$	34.0	63.9	250	44.4
Sliding Window-L $(\times 5)$	21.2	46.3	90	0
Sliding Window-H	64.7	74.7	450	100
Gao et al. $\boxed{7}$ (×2)	64.5	73.1	295	7.1
Gao et al. $\boxed{7}$ (\times 5)	57.3	70.7	309	43.3
CPNet $(\times 2)$	64.4	74.5	267	6.6
CPNet (×5)	61.7	74.1	270	44.4

Table 2 : Results on the Caltech Pedestrian test set.

Code

https://github.com/uzkent/EfficientObjectDetection

zkent / EfficientObject					
Code Issues 0	Pull requests 0 O Action	ons 🛄 Projects o 💷 W	iki 🕕 Security 🔟 Insights	Settings	
Torch Implementation of Effi	cient Object Detection in	Large Images with RL		Edit	
inage topics					
⑦ 56 commits	🖗 1 branch	🗇 0 packages	♥ 0 releases	La 1 contributor	
Branch: master - New pull req	uest		Create new file Upload files F	ind file Clone or download -	
uzkent Readme update			Lat	est commit 81ae891 4 days ago	
dataset	file renaming			6 days ago	
figures	README updat	e		6 days ago	
utils	Policy Network	Update to R18		4 days ago	
README.md	Readme update	e		4 days ago	
constants.py	Paths entered,	updated readme		4 days ago	
environment.yml	Requirements a	added		6 days ago	
	Variable Name	Changed in Constants		6 days ago	
train.py	variable riarie	9			

Efficient Object Detection in Large Images with Deep Reinforcement Learning

This repository contains PyTorch implementation of our IEEE WACV20 paper on Efficient Object Detection in Large Images with Deep Reinforcement Learning. The arxiv version of the paper can be found here.