Introduction

visual object tracker at real-time on low-cost embedded system.

	>300fps Trackers				<50fps Trackers				
Tracker	DCF	CSK	MOSSE	KCF	ССОТ	DSST	SAMF	LCT	ECO
Scale Adaptive	NO	NO	NO	NO	YES	YES	YES	YES	YES

that provides largest confidence as the new scale.

EnKCF : Ensemble of Kernelized Correlation Filters for High Speed Object Tracking *Burak Uzkent and YoungWoo Seo *Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology

Proposed Method

hanning window is **not** applied

in Frequency
(Primal) ->
$$\hat{\mathbf{w}} = \frac{\hat{\mathbf{x}}^* \odot \hat{\mathbf{y}}}{\hat{\mathbf{x}}^* \odot \hat{\mathbf{x}} + \lambda}$$

requires $O(nlog(n))$

Experimental Results

> The proposed scale adaptive high speed tracker is tested on UAV123, (>300fps), and DSST, ECO, CCOT, SAMF (<50fps).

> <i>300fps</i> Trackers	EnKCF	KCF	DCF	CSK	MOSSE	STC
Precision (20 px, %)	54.5	52.3	52.6	48.7	46.6	50.7
Success Rate (AUC, %)	40.2	33.6	33.7	31.4	30.1	32.9
FPS	416	296	457	400	512	340

Results on the UAV123 Dataset. Comparison is performed between high and low speed trackers.

> <i>100fps</i> Trackers	EnKCF	KCF	DCF	CSK	MOSSE	STC
Precision (20 px, %)	46.2	38.5	38.7	38.1	36.7	38.7
Success Rate (AUC, %)	35.1	26.4	26.5	26.9	26.8	28.9
FPS	151	296	457	400	512	340

Results on the UAV123_10fps Dataset. Comparison is performed between high and low speed trackers. In this case, small area translation filter is run in every frame.

EnKCF with Deep Convolutional Features

ReLu + 3x3 conv ReLu

UAV123_10fps, and OTB100 datasets. And it is compared to the high-speed and low-speed tracking-by-detection algorithms such as KCF, DCF, MOSSE

<50fps Trackers	EnKCF	ECO	ССОТ	SAMF	MUSTER	DSST
Precision (20 px, %)	54.5	61.6	63.3	59.2	59.3	58.6
Success Rate (AUC, %)	40.2	49.1	49.8	40.3	39.9	36.1
FPS	416	53	12	5	1	35

< <i>50fps</i> Trackers	EnKCF	ECO	ССОТ	SAMF	MUSTER	DSST
Precision (20 px, %)	46.2	55.8	56.8	44.7	50.9	42.6
Success Rate (AUC, %)	35.1	46.1	47.1	32.7	37.2	28.5
FPS	151	53	12	5	1	35

*EnKCF with hand-crafted features can run at >30fps on low-cost embedded systems.

> *ECO, CCOT, SAMF, MUSTER, and DSST will potentially run at <10fps on low-cost embedded system. Their performance on UAV123_10fps dataset indicates what performance we can expect on low-cost embedded systems.

encode objects.