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Introduction - Runtime Efficiency
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e There exists no adaptive compression
technique on the image domain.



Introduction - Remote Sensing
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PatchDrop - Adaptive Solution
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Modeling the Policy Network and Classifier
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Modeling the Reward Function
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Modeling the Policy Network and Classifier
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Training Protocol
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Experiments on ImageNet/CIFAR10

CIFAR10 ImageNet
ﬁ. -,‘ Acc. (%) Acc. (%) S Acc. (%) Acc. (%) S
¥ e AN (Pt) (Ft-1) (Pt) (Ft-1)
LR (56)é§g LR-CNN 75.8 75.8 0,0 58.1 58.1 0,0
SRGAN 78.8 78.8 0,0 63.1 63.1 0,0
KD 81.8 81.8 0,0 62.4 62.4 0,0
PCN 83.3 83.3 0,0 63.9 63.9 0,0
HR-CNN 92.3 923 16,16 76.5 76.5 16,16
Fixed-H 71.2 83.8 9.8 48.8 68.6 10,9
Fixed-V 64.7 83.4 9.8 48.4 68.4 10,9
Stochastic 40.6 82.1 9.8 38.6 66.2 10,9
STN 66.9 85.2 9,8 58.6 69.4 10,9
PatchDrop 80.6 91.9 8.5,7.9 60.2 74.9 10.1,9.1

HR (224x224)

Table 1: Experiments on ImageNet and CIFAR10

*We process about 45-50% fewer number of pixels than HR-CNN.



Experiments on functional map of the world (fMoW)

Acc. (%) Acc. (%)

Py O (Fel) O
LR-CNN 61.4 0 61.4 0
SRGAN 62.3 0 62.3 0
KD 63.1 0 63.1 0
PCN 63.5 0 63.5 0
HR-CNN 67.3 16 67.3 16
Fixed-H 47.7 4 63.3 6
Fixed-V 48.3 7 63.2 6
Stochastic 29.1 7 371 6
STN 46.5 7 61.8 6
PatchDrop 534 7 67.1 5.9

Table 2: Experiments on fMoW

*We use about 60% less # of pixels than HR-CNN
*We can save about 100,000 dollars when performing a
vision task using HR satellite images at global scale.




Qualitative Results - fMoW
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Impact of Joint Fine-tuning on CIFAR10
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Reward Function (CIFAR100)
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Run-time Efficiency

CIFAR10 CIFARI00 fMoW ImageNet

LR-CNN 44 M 44 M 240M  240M
HR-CNN 69.1 M 69.1 M 38B 3.8B
Fixed-H 3I9M 43 M 1.7B 2B
Fixed-V 3I9M 43 M 1.7B 2B
Stochastic 3I9M 43 M 1.7B 2B
STN 412 M 46.7 M 2B 23B

PatchDrop 40.1 M 454 M 1.9B 22B

Table 3: Run-time efficiency (FLOPS) on four different benchmarks.

*Patchwise inference reduce computational complexity by 40-50% without
changing the underlying CNN structure.

Brendel, Wieland, and Matthias Bethge. "Approximating cnns with bag-of-local-features models works surprisingly well on imagenet." arXiv preprint arXiv:1904.00760 (2019).



Conclusions

e \We proposed an adaptive, conditional method to process adaptive
number of pixels with convolutional neural networks.
e \With the proposed method, on average we use up to 50% less

number of pixels and this leads to:
o 40-50% less run-time FLOPs.
o less dependency on high resolution images (can be cost-saving in some
application domains.)

e \We extended the problem to object detection in large images and
show that we can reduce the dependency on using HR images for
object detection.



Reducing Dependency on Labels
on Remote Sensing Images
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Introduction

e Training Convolutional Neural Networks are usually done by:
o First pre-training on ImageNet Dataset.
o And then fine-tuning on the Target Dataset.
e This procedure can be very useful for:
o Faster convergence in target dataset training
o Improved downstream accuracy for small-size target datasets.
e However, pre-training on ImageNet can be less helpful when the shift
between ImageNet and target dataset distribution is large.



Motivation

e In some applications, i.e. remote sensing and medical images, data
distribution is very different from ImageNet’s one.

ImageNet Satellite MRI
e Inthese cases, it is beneficial to do pre-training on a similar
distribution dataset. [Zhang et al. Arxiv20]



Proposed Method

e In this study, we propose a method to efficiently pre-train a CNN on
dataset with satellite images.
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Learning from Satellite Images using Wikipedia Articles

e Inits latest dump, Wikipedia contains ~5 million articles (English)
and ~1 million articles are geo-referenced.

Maracana Stadium

- JFK Airport Maracarismdium Taj Mahal

Scatter plot of the distribution of geo-tagged Wikipedia articles together
with corresponding high resolution images.



Pairing Articles to Satellite Images - WikiSatNet

D

Nelson Mandela Bridge

From Wikipedia, the free encyclopedia Coordnatos: (g 26.1967°5 28.0042°E

C1,T1,Y1),\C2,T2,Y2)," " ", CN,QJN,ZJN)}

Not to be confused with Nelson Mandela Bridges.

This articie needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sourcss:"Nelson Mandela Bridge” — news - cholar - JSTOR
Nelson Mandela Bridge is a bridge in Johannesburg, South Africa. Itis the fourth of five bridges which cross the railway fines and sidings located just west of Johannesburg Park Station, the first being the Johan Rissik Bridge Nelson Mandola Bridge

adjacent to the station. It was completed in 2003, and cost R102-120 millon to build. 1121 The proposal for the bridge was 1o link up two main business areas of Braamfontein and Newlown as well as to rejuvenate and to a
certain level modernise the inner Gty.
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Gomez, L., Patel, Y., Rusifol, M., Karatzas, D. and Jawahar, C.V., 2017. Self-supervised learning of visual features through
embedding images into text topic spaces. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (pp. 4230-4239).



Representation Learning with Image2Text Matching

Downstream Task
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*An automatic approach.



Analyzing Doc2Vec Model
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City - Middletown, Connecticut
City - Milton, Georgia
Lake - Timothy Lake
Lake - Tinquilco Lake
Town - Mingona Township, Kansas
Town - Moon Township, Pennsylvania
Road - Morehampton Road, Dublin
Road - Motorway M10 Pakistan
River - Motru River
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Island - Avatanak Island

*Articles with similar content are projected to the similar latent space.



Pre-training Experiments (Image2Text)

e \We use DenseNet with 121 layers to parameterize the CNN.
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Figure 1: Training Loss
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Figure 2 Cosine distance between positive and
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Target Task - functional Map of the World (fMoW)

e Itincludes 350k, 50k, 50k samples across 62 classes from the

training, validation, and test sets.

>
-

Pre-training Dataset (WikiSatNet)

Target Dataset (fMoW)

2500+

2000

1500

1000

Christie, Gordon, Neil Fendley, James Wilson, and Ryan Mukherjee. "Functional map of the world." In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pp. 6172-6180. 2018.



Examples from Target Dataset
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Image Classification on fMoW

70 A

______
g—
"

(=]
o
1

w
o
1

> -
V -
v -

»
o
1

From Scratch
-== CIFAR10
-== ImageNet

WikiSatNet
Weak Supervision

WikiSatNet
Image2Text

Top 1 Accuracy
w
o

N
o
1

—
o
1

10 50 100 200 350
Number of Samples (*103)

-

*Gap decreases w.r.t
sample complexity

WikiSatNet  WikiSatNet

Model CIFARIO ImageNet WenbLatels, Diseeomine
F1 Score
(Single View) 55.34 (%) 64.71 (%) 66.17 (%) 67.12 (%)
F1 Score

(Temporal Views) 60.45 (%)  68.73 (%) 71.31 (%) 73.02 (%)

Table 1: F1 scores of pre-training methods on
fMoW'’s test set.

*We achieve similar accuracy with the trained
from scratch model when using 10 times less
amount of labeled samples.
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Unsupervised Learning with Contrastive Loss

e The task is to learn representations without any supervision.
e Unsupervised learning has seen tremendous growth with the
contrastive learning.

Augmented
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Remote Sensing Images with Metadata

e Remote sensing images come with metadata information which can be used
to improve unsupervised learning.

"gsd": 2.10264849663 2.06074237823  1.9968634 2.2158575 1.24525177479 1.4581833 1.2518295
"img_width": 2421 2410 2498 2253 4016 3400 4003
"img_height": 2165 2156 2235 2015 3592 3041 3581
"country_code": IND IND IND IND IND IND IND
"cloud_cover": 6 0 1 0 0 2 0
“timestamp": 2015-11-02 2016-03-09 2017-02-02 2017-02-27 2015-04-09 2016-12-28 2017-04-12
T05:44:14Z T05:25:30Z T05:47:02Z T05:24:30Z T05:36:042 T05:57:06Z T05:51:492

*Such meta-data for remote sensing images is free and comes with every image.



Contrastive Learning with Temporal Positives
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Temporal Positives

Incorporating Geo-location Classification
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Experiments on fMoW

e The fMoW dataset consists of 350k training and 53k validation

images.
e \We perform linear probing on the same dataset to evaluate the
representations.
Accuracy 1 Accuracy 1
Backbone | ;00 Epochs) | (200 Epochs)
Sup. Learning * ResNet50 69.05 69.05
Geoloc. Learning* | ResNet50 52.40 52.40
MoCo-V2 ResNet50 58.32 60.69
MoCo-V2+Geo ResNet50 63.65 64.07
MoCo-V2+TP ResNet50 67.15 68.32
MoCo-V2+Geo+TP | ResNet50 65.77 66.33
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