

Aerial Vehicle Tracking using a Multi-modal Adaptive Hyperspectral Sensor

1

Name : Burak Uzkent

Advisor : Dr. Matthew J. Hoffman

Co-Advisor : Dr. Anthony Vodacek

- By using an aerial platform, we want to track all moving objects or an object of interest persistently.
- Aerial Tracking is a more challenging task than the traditional object tracking due to
 - Small number of pixels representing a vehicle
 - Large Camera Motion
 - Parallax effect due to 3-D structures in the scene.
 - Registration errors
 - Severe occlusions
- The Wide Area Motion Imagery (WAMI) Platform is the state-of-the-art sensor that is used for aerial vehicle tracking.

Low Resolution Effect - WAMI

Parallax Effect on Registration

- However, still, more descriptive sensory information is required to address the challenges of aerial tracking.
- With recent advancements in the sensor technology, quick hyperspectral data acquisition is possible.

Visualization of a Hyperspectral Image Cube

 One example of such sensor is the Rochester Institute of Technology Multi-object Spectrometer (RITMOS).

Adaptive Hyperspectral Sensor

Micromirror Arrays

Tracking Platforms

- We simulate two different scenarios listed as
 - Fixed platform tracking.
 - Moving platform tracking from a sensor mounted onto a Drone or an Aircraft.
- Fixed platform focuses on spectral resolution whereas the moving platform focuses on higher spatial resolution.

Scenario Generation from a Fixed Platform

Digital Image and Remote Sensing Platform (DIRSIG)

Simulation of Urban Mobility Platform (SUMO)

Chester F. Carlson

IMAGING SCIENCE

Panchromatic Image Wavelength Range	Micromirror Array Size	HSI data Wavelength Range	Focal Length	Gap between Micromirror Arrays	Platform Altitude	# Vehicles	# Paint Models	Ground Sampling Distance	# Bands	Duration
400 – 700 nm	17-17 Mm	400 - 1000 nm	225 mm	1 Mm	3000 m	89	24	0.75 m.	121	130 s.
			PITM	OS based sim	ulation nar	amatar sa	ttings			

RITMOS based simulation parameter settings

Scenario Generation

DIRSIG generated RGB image of the scenario (part of Megascene 1 area)

RGB image screenshot taken from Google Maps (Histogram Equalized)

Radiometric Postprocessing

Chester F. Carlson

- We go through a Radiometric Process to simulate a realistic data in terms of the amount noise present.
- Sensor reaching radiance values are converted to digital outputs by considering the
 - Shot Noise
 - Possion Noise
 - Saturation Noise
 - Dark Noise

Tracking Framework

Next Frame

Chester F. Carlson

IMAGING SCIENCE

Fixed Platform Tracking (Detection)

Chester F. Carlson

IMAGING SCIENCE

HSI Sampling for the Fixed Platform

Hyperspectral Feature Matching

Chester F. Carlson

Blob Elimination (Motion Detection) Algorithm

```
Form feature matrix S_k^d for each detected blob d = 1, ..., D;
for t = k - 1, ..., 2 do
    if the target is not lost at t then
       f_k^d \longleftarrow mean\{min\{SAM(S_k^d, S_t^{match})\}, min\{SAM(S_k^d, S_1^{user})\}\};
        for b = 1, ..., B do
           if f_k^d > SAM Threshold then
                eliminate it;
            end
        end
        break;
    end
```

end

Hyperspectral Feature Matching

Virtual Blob Extraction (Motion Estimation) Algorithm

```
Form feature matrix G_k^d for each kernel n = 1, ..., N;
for t = k - 1, ..., 2 do
   if the target is not lost at t then
       f_k^n \longleftarrow mean\{min\{SAM(G_k^d,G_t^{match})\},min\{SAM(G_k^d,G_1^{user})\}\};
       for n = 1, ..., N do
           if f_k^n < SAM Threshold then
               add n to match vector v;
           end
       end
       Cluster matched kernels, X_{k|k-1}^v;
       break;
   end
end
```


Blob-to-Track Association

• We consider the Short-term Multiple Hyphothesis Tracker (MHT) algorithm to fuse kinematic and hyperspectral likelihoods.

Poore, Aubrey B., and Alexander J. Robertson III. "A new Lagrangian relaxation based algorithm for a class of multidimensional assignment problems." Computational Optimization and Applications 8.2 (1997): 129-150.

Results on Fixed Platform (Building)

- The baseline methods are
 - Multi-dimensional kinematic only tracker (S-D KT)
 - Hyperspectral Likelihood only tracker (HT)
 - Two-dimensional kinematic only tracker (2-D KT)
 - Multi-dimensional feature-aided tracker without HSI based Blob Extraction step (S-D FAT W/o Blob Ext.)
 - Multi-dimensional feature aided tracker without hyperspectral likelihood integration (S-D FAT W/o HSI L-hood)

		ni ni Vitis				
Metric / Tracker	6-D (KT)	ΗT	2-D (FAT)	6-D (FAT) W/o HSI L-hood	6-D (FAT) W/o Blob Ext.	6-D (FAT)
Precision	24.88	39.82	39.23	44.12	32.88	57.63
Recall	24.88	35.85	39.15	43.64	29.38	57.13

Average Precision and Recall values for the Fixed Platform Tracking

B. Uzkent, M. J. Hoffman, and A. Vodacek, "Integrating Hyperspectral Likelihoods in a Multidimensional Assignment Algorithm for Aerial Vehicle Tracking", IEEE Journal Of Selected Topics In Applied Earth Observations And Remote Sensing (Accepted).

Tracking from a Moving Platform (Drone)

Chester F. Carlson

IMAGING SCIENCE

- Panchromatic images are used to compute homography between the reference and input frame.
- We use the SIFT to find keypoints and describe keypoints with gradient histogram features.
- The keypoints are matched and RANSAC is used to remove outliers and compute homography.

Matched Keypoints

After RANSAC

Image Alignment

Chester F. Carlson CENTER for

• The homogaphy, *H*, between frame 1 and frame *k* is computed as

 $H_{k,1} = H_{k,k-1} * H_{k-1,k-2} * H_{k-2,k-3}, ..., H_{2,1}$

Aligned images of the entire video overlaid to a canonical frame

Background Removal

632 nm 800 nm COLOCUPIC ROC (AUC: 88.54%, EER: 11.97%) 0.9 0.8 True Positive Rate 0.7 $V_{MAP}(x,y) = \frac{I_{NIR}(x,y) - I_{RED}(x,y)}{I_{NIR}(x,y) + I_{RED}(x,y)}$ 0.6 0.5 0.4 0.3 0.2 ROC 0.1 ROC rand. 0 <mark>|</mark> 0.2 0.4 0.6 0.8 False Positive Rate Chester F. Carlson

Hyperspectral Similarity Score Assignment

• Gradient Integral images are computed for each bin of every band.

SCIENCE

Hyperspectral Similarity Score Assignment

Chester F. Carlson

MARING SCIENCE

• In O(nx3), we can compute a hyperspectral histogram of a pixel.

 Likelihood maps are applied a threshold by with the Multilevel Otsu's Threshold method.

Vehicle Confirmation Module

Results on Moving Platform (Drone)

Digital Imaging and Remote Sensing Lat

Chester E Carlson

- The baseline methods are
 - Nearest Neighbor Tracker (NN)
 - Probabilistic Data-Association Filter (PDAF)
 - Multiple Hypothesis Tracker Filter (MHT)
 - Mean-shift Tracker
 - A state-of-the-art traditional object tracker (OFDS)
 - Likelihood of Features Tracking tracker (LoFT)

6	20 - C						
Metric / Tracker	NN	PDAF	MHT	Mean-Shift	OFDS	LOFT	Ours
Precision	39.25	26.17	39.20	8.88	12.66	60.30	69.78
Recall	34.65	14.19	35.07	8.88	12.66	40.50	60.35
			Ave	erage of 43 Tracks			
	Modul	е	NDVI	Road Classifier	Score Assignment	HoG-SVM	
	Run Tim	ne	0.002 s.	0.08 s.	0.2 s.	0.05 s.	

Run times for Detection Modules (Tested on a personal computer with 2.8 GHz I7 processor and 8GB RAM)

B. Uzkent, M. J. Hoffman, and A. Vodacek, "Real-time Tracking in Aerial Video using Hyperspectral Features", Computer Vision and Pattern Recognition Workshop (CVPRW), 2016. (Accepted)

26

The 2nd Approach for the Moving Platform

 Some vehicles are better separated from the background pixels in a certain wavelength range.

$$L_{Final} = \sum_{i}^{N} w_i L_i$$

Adaptive Likelihood Map Fusion

- Computing a likelihood map for each band is costly.
- The likelihood maps of the adjacent bands are correlated.

Variance Ratio method computes coefficients on the likelihood maps.

Yin, Zhaozheng, Fatih Porikli, and Robert T. Collins. "Likelihood map fusion for visual object tracking." Applications of Computer Vision, 2008. WACV 2008. IEEE Workshop on. IEEE, 2008.

Proposed Grouping Method

Chester F. Carlson

IMAGING SCIENCE

Adaptive Map Fusion Results

Adaptive Map Fusion Results

Chester E Carlson

- The baseline methods are
 - Gray-scale Image Tracker with Same Method (Gray-scale)
 - RGB Image Tracker with Adaptive Map Fusion (RGB)
 - Multispectral Image Tracker with Adaptive Map Fusion (MSI)
 - Hyperspectral Image Tracker with Classic Map Fusion
 - Hyperspectral Image Tracker with Variance Ratio Method based Map Fusion
 - 6-D Hyperspectral Likelihood-aided Tracker (6-D FAT)

Results for the 2nd Approach

Chester F. Carlson

SCIENCE

Metric / Tracker	Gray-Scale	RGB	MSI	HSI (Classic)	HSI (VR)	6-D FAT	Ours
Precision	28.43	39.20	55.12	50.17	48.26	69.78	64.37
Recall	04.28	35.07	50.91	45.25	44.56	60.35	57.49

Experiments on Different Challenge Levels

PSNR-SAM	23.49 db 8.3 SAM	24.85 db 7.7 SAM	26.10 db 7.0 SAM	27.22 db 6.6 SAM	28.11 db 6.3 SAM	28.93 db 6.3 SAM	30.30 db 5.8 SAM
Precision	43.74	47.60	55.81	62.28	61.27	66.12	64.37
Recall	38.31	42.42	48.95	54.89	56.71	58.01	57.49
Metric With Trees		Without Trees		Metric	Metric 12:00 PM		15:00 PM
Precision	64.37	82.54		Precision	64.37		82.54
Recall	Recall 57.39		30.54	Recall	57.3	9	80.54

Conclusions

Chester E Carlso

- We considered an adaptive hyperspectral sensor to improve tracking in adverse scenes.
- We proposed tracking algorithms that tackle:
 - Frequent stop-then-go motions in fixed platforms case
 - Large uncertainty in blob-to-track association by integrating hyperspectral likelihoods
 - Background subtraction-free target detection task in moving platform case.

- More research is required to automatically find the best number of hyperspectral bands and likelihood maps in the adaptive likelihood maps fusion method.
- The proposed approaches need to be tested with real aerial hyperspectral data.
- Can we train a deep CNN model to detect vehicles in a ROI using hyperspectral data?
- Can we train it to classify vehicles into a number of groups based on their paint models?
- Can we train a deep CNN with synthetic data and fine-tune it with real hyperspectral data?

