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Introduction

e Deep Neural Networks rely on the following framework:
o Pre-train on ImageNet Dataset.
o Fine-tune on the Target Dataset.
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Related Work - Learning from Instagram Images

e Mahajan et al. builds an image el TIGRE,

dataset consisting of 3 billion images
from Instagram.

e They label the images using the
hashtags given by the users.

e Pre-training improves recognition
accuracy on ImageNet by %5.

Mahajan, Dhruv, Ross Girshick, Vignesh Ramanathan, Kaiming He, Manohar Paluri,
Yixuan Li, Ashwin Bharambe, and Laurens van der Maaten. "Exploring the limits of
weakly supervised pretraining." In Proceedings of the European Conference on
Computer Vision (ECCV), pp. 181-196. 2018.




Learning from Satellite Images using Wikipedia Articles

e Inits latest dump, Wikipedia contains ~5 million articles (English)
and ~1 million articles are geo-referenced.

Port of Boston Chrysler Building

= B o 4 N )
JFK Airport Maracana Stadium Taj Mahal Hagia Sophia Colosseum

Scatter plot of the distribution of geo-tagged Wikipedia articles together
with corresponding high resolution images.



Pairing Articles to Satellite Images - WikiSatNet

D

Nelson Mandela Bridge

From Wikipedia, the free encyclopedia Coordnatos: (g 26.1967°5 28.0042°E

C1,T1,Y1),\C2,T2,Y2)," " ", CN,QJN,ZJN)}

Not to be confused with Nelson Mandela Bridges.

This articie needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sourcss:"Nelson Mandela Bridge” — news - cholar - JSTOR
Nelson Mandela Bridge is a bridge in Johannesburg, South Africa. Itis the fourth of five bridges which cross the railway fines and sidings located just west of Johannesburg Park Station, the first being the Johan Rissik Bridge Nelson Mandola Bridge

adjacent to the station. It was completed in 2003, and cost R102-120 millon to build. 1121 The proposal for the bridge was 1o link up two main business areas of Braamfontein and Newlown as well as to rejuvenate and to a
certain level modernise the inner Gty.
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Gomez, L., Patel, Y., Rusifol, M., Karatzas, D. and Jawahar, C.V., 2017. Self-supervised learning of visual features through
embedding images into text topic spaces. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (pp. 4230-4239).



Representation Learning with Weak Labels
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Representation Learning with Image2Text Matching
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Flipped Label Noise

Iserbrook (ship)

Tag g ed as ‘I N CI DE N T’ Iserbrook was a general cargo and passenger brig built in 1853 at Hamburg
(Germany) for Joh. Ces. Godeffroy & Sohn. It spent over twenty years as an

immigrant and general cargo vessel, transporting passengers from Hamburg to
South Africa, Australia and Chile, as well as servicing its owner’s business in the
Pacific. Later on, the vessel came into Australian possession and continued sailing
for the Pacific trade. In 1878 it caught fire and was sunk the same year. At last, it was
re-floated and used as a transport barge and hulk in Sydney until it sunk again and
finally was blown up.

Construction and Description

The vessel was built for the Hamburg trading
company Joh. Ces. Godeffroy & Sohn. At the time,
the enterprise was operated by Johan César VI.
Godeffroy who had large trading interests in the
Pacific, focussing mainly on Copra, Coconut oil
and luxuries like pearlshell. In the 1850s and 60s,

the company was also strongly associated with

o N 5 g built in 1855/56 in the Godeffroy
emigration from Germany to Australia, especially shipyard at the Reiherstieg wharf. This

to Adelaide and Brisbane. vessel was just 30 tones larger and built
one year after the Iserbrook for the

sSame owners

Tn its ariginal Hamhnre registration (Rielhrief).

*The word “Water”’ is mentioned 10 times in the article.
*The word “Sea” is mentioned 11 times in the article
*The word “Port’ is mentioned 11 times in the article




Adversarial Label Noise

City

*It is hard to come up with a single label when some labels are sampled from
similar distribution.



Analyzing Doc2Vec Model

n City - Middletown, Connecticut

ty City - Milton, Georgia
Lake - Timothy Lake
0.5 1 Lake - Tinquilco Lake
Town - Mingona Township, Kansas
0.0 - ¢sland Town - Moon Township, Pennsylvania
dsland Road - Morehampton Road, Dublin
Road - Motorway M10 Pakistan
-0.5 { giver d’%%d River - Motru River
¢!ver dake River - Mousam River
, : : Island - Aupaluktok Island
-0.5 0.0 0.5 Island - Avatanak Island
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*Articles with similar content are projected to the similar latent space.



Image2Text Matching Pre-training Experiments

e \We use DenseNet with 121 layers to parameterize the CNN.

90 A
80 A
Q
[®)]
c 70 A
<<
2
% 60 1 e _z7Ill
8 AT&T Stadium [
AT&T Stadium -
50 - St oo S it e i s R
v i
§W32 44'52"N 97°5'34"W "'g™ - ----
04 @ N AN%\ e = e |
0 10000 20000 e I v~ i
https://en.wikipedia.org/wiki/A T%26"'T‘_Stadlum

Iteration Number



Target Task- functional Map of the World (fMoW)

e Itincludes 350k, 50k, 50k samples across 62 classes from the
training, validation, and test sets.

Instances per Category
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Christie, Gordon, Neil Fendley, James Wilson, and Ryan Mukherjee. "Functional map of the world." In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 6172-6180. 2018.



Examples

a1rporl ﬁangar airport terminal amusement park aquaculture archaeological site

burial site car dealershlp construction site

factory or powerplant  false detection fire station ﬂooded road fountain gas station

crop ﬁeld debris or rubble  educational institution _electric substation

golf course ground transportauon

station



Image Classification on fMoW
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WikiSatNet  WikiSatNet

Model CIFARIO ImageNet WeabLabels. Tnasedion
F1 Score

(Single View) 5534 (%) 6471 (%) 6617 (%)  67.12 (%)

s 60.45 (%) 68.73 (%) 7131 (%)  73.02 (%)

(Temporal Views)

Table 1: F1 scores of pre-training methods on fMoW'’s test set.



Building Segmentation on SpaceNet

\Pre-trained

............................... .
y ! y
S DenseNet DenseNet | 1 ‘ .
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WikiSatNet
Image2Text
200 Samples 42.11 (%) 50.75 (%) 51.70 (%)

500 Samples 48.98 (%)  54.63 (%)  55.41 (%)
5000 Samples  57.21 (%)  59.63 (%)  59.74 (%)

Table 2: mloU scores of pre-training methods on SpaceNet test set.

Model From Scratch  ImageNet

*Pre-training works best when we consider the same level tasks. (He et. al CVPR 2019)



Learning Where and When to Zoom

using Deep Reinforcement Learning
CVPR - 2020

Burak Uzkent, Stefano Ermon
Department of Computer Science, Stanford University



Motivation

e Understanding the salient parts of an image is an important research
field in computer vision.

e In our study, we pose it as a Reinforcement Learning task and train an
RL agent to learn patch dropping policies.

*Do we need the full image to be able to classify this
image as ship?

*Can we just process small part of this image and identify
that 1t 1s ship?




Motivation

e Understanding the salient parts of an image is an important research
field in computer vision.

e In our study, we pose it as a Reinforcement Learning task and train an
RL agent to learn patch dropping policies.

*If we process less number of pixels. we can build more
efficient models.

\.\




How Robust is CNNs to Patch Dropping?

Do we need all the patches in an image to infer correct decisions?

We train a ResNet32 on CIFAR10 and test it with random patch drop policy.

92.3%
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How Robust is CNNs to Patch Dropping?

Do we need all the patches in an image to infer correct decisions?

We train a ResNet32 on CIFAR10 and test it with random patch drop policy.

92.3% 91.1% 88.4% 46.3%

Can we design a conditional patch dropping strategy?



PatchDrop - Proposed Solution

Low Resolution
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Actions -> a; € {0,1}" a, € {0,1,... N}

*Conditioning the Policy Network on LR images introduces minimal computational overhead.
*In some domains, i.e. remote sensing, LR images are more affordable than HR images.



Modeling the Policy Network and Classifier

Low Resolution

== Policy Network HR Network
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Patch Sampling Policy->  71(a1lx;, 0p) = H spt (1 — 5,)01 70
p=1
Policy Network Predictions-> Sp = Jp(x15 6p) sp € [0, 1]
Classifier Predictions-> Sci = fe(x]"; Oc1)

Cost Function-> [ rgnax J(Op, 0c1) = Ep[R(ay, az,y)] J
p




Modeling the Reward Function

|81|1

2
Reward Function-> R(al, a, y) = 1 - (T) lfy — y(a?.)
—c Otherwise.

Low Resolution
Image Policy Network
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3 7 1 15

High Resolution
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Cost Function-> [ g:ax J (‘91” Oc1) = [Ep [R(a1, az,y)] J

NOT Differentiable!




Optimizing the Policy Network

e \We train the Policy Network using the Policy Gradient Algorithm.

. N

Cost Function-> Vo,J = E[R(a1,a2,y)Vy, Elog 7y, (allxl)E] Differentiable!

P
Vo,J = E[A ) Vg, log(spa] + (1 —s,)(1 — a}))]
p=1

Advantage Function -> A(ag, 21, a,a3) = R(ag, a3,y) — R(a1, 2z, y)

Temperature Scaling -> Sp =as, + (1 —a)(1 —sp)



Pre-training Stage

e First, we train the classifier using original images.
e Next, we fix the classifier's weights and train the policy network.

Pre-training Stage

Low Resolution

Image Policy Network

High Resolution
Sampled Patches

Update 0,

e The policy network learns informative patches however the accuracy
is reduced since the classifier is not trained on masked images.



Jointly Fine-tuning the Policy Network and Classifier

e \We fine-tune the classifier jointly with the policy network.
e The classifier updates itself to adapt to the learned masked images
and policy network updates the learned policies.

High Resolution
Sampled Patches Update 6,
C

Update 0,

Joint Fine-tuning Stage

e In this step, we learn to drop more patches while increasing the
accuracy w.r.t to the pre-training stage.



Experiments on CIFAR10/CIFAR100/ImageNet

e For CIFAR10/100, we use 45k, 5k, and 10k training, validation and
test samples and for ImageNet, we use 1.2 million, 50k, and 150k
training, validation and test images.

CIFAR10 CIFARI100 ImageNet

Acc. (%) Acc. (%) Acc. (%) S Acc. (%) Acc. (%) Acc. (%) S Acc. (%) Acc. (%) Acc. (%) S

(Pt) (Ft-1) (Ft-2) (Pt,Ft-1,Ft-2) (Pt (Ft-1) (Ft-2) (PtFt-1,Ft-2) (Pv) (Ft-1) (Ft-2) (Pt,Ft-1,Ft-2)
LR-CNN 75.8 75.8 75.8 0,0,0 55.1 55:1 55.1 0,0,0 58.1 58.1 58.1 0,0,0
SRGAN[ ] 788 78.8 78.8 0,0,0 56.1 56.1 56.1 0,0,0 63.1 63.1 63.1 0,0,0
KD[ ] 81.8 81.8 81.8 0,0,0 61.1 61.1 61.1 0,0,0 62.4 62.4 624 0,0,0
PCN [ ] 83.3 83.3 83.3 0,0,0 62.6 62.6 62.6 0,0,0 63.9 63.9 63.9 0,0,0
HR-CNN 92.3 92.3 92.3 16,16,16 69.3 69.3 69.3 16,16,16 76.5 76.5 76.5 16,16,16
Fixed-H 712 83.8 85.2 98,7 48.5 65.8 67.0 9,10,10 48.8 68.6 70.4 10,9.8
Fixed-V 64.7 83.4 85.1 9.8,7 46.2 65.5 67.2 9,10,10 484 68.4 70.8 10,9.8
Stochastic 40.6 82.1 83.7 9,8,7 27.6 63.2 64.8 9,10,10 38.6 66.2 68.4 10,9.8
STN [ ] 66.9 85.2 87.1 9,8,7 41.1 64.3 66.4 9,10,10 58.6 69.4 71.4 10,9.8
PatchDrop 80.6 91.9 91.5 8.5,7.9,6.9 57.3 69.3 70.4 9,9.99.1 60.2 74.9 76.0 10.1.9.1,7.9

*The proposed framework drops about %40-%60 of the patches while maintaining the
classification accuracy of the model using original HR images.



Learned Patch Sampling Policies

ImageNet




Impact of Joint Fine-tuning
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BagNets (Brenden et al. ICLR 2019)
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Brendel, Wieland, and Matthias Bethge. "Approximating cnns with bag-of-local-features models works surprisingly well on
imagenet." arXiv preprint arXiv:1904.00760 (2019).
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Conditional BagNets - Experiments on CIFAR10
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Conditional BagNets - Experiments on CIFAR10

Acc. (%) Acc. (%) S Run-time. (%)
(Pt) (Ft-1) (ms)
BagNet (No Patch Drop) 85.6 16 85.6 16 192
CNN (No Patch Drop) 923 16 923 16 77
Fixed-H 67.7 10 863 9 98
Fixed-V 68.3 10 86.2 9 98
Stochastic 49.1 10 83.1 9 98
STN 67.5 10 868 9 112
BagNet (PatchDrop) 774 95 IJL7T 85 098

Table 1: Results on the CIFAR10 dataset. S represents the number of
sampled patches.

Brendel, Wieland, and Matthias Bethge. "Approximating cnns with bag-of-local-features models works surprisingly well on
imagenet." arXiv preprint arXiv:1904.00760 (2019).



Conditional Hard Positive Generation

CIFARI10 (%) CIFARIO0 (%) ImageNet (%) fMoW (%)
(ResNet32) (ResNet32) (ResNet50) (ResNet34)

No Augment. 92.3 69.3 76.5 67.3
CutOut 93.5 70.4 76.5 67.6
PatchDrop 93.9 71.0 78.1 69.6

Table 2: Accuracies on different benchmark after adversarial training.

DeVries, Terrance, and Graham W. Taylor. "Improved regularization of convolutional neural networks with cutout." arXiv preprint
arXiv:1708.04552 (2017).



Efficient Object Detection in Large Images
Using Deep Reinforcement Learning
WACYV - 2020

Burak Uzkent, Christopher Yeh, Stefano Ermon
Department of Computer Science, Stanford University



>1000 pixels

Detection in Large Images - Sliding Window

e Large images are processed with sliding window approach since

We do not need to downsample
It has low memory requirement

©)

©)

>1000 pixels

Object Detector

—>

- ;- _____________________
300 - 500 pixels

‘ Dense Detections ‘

NMS and
Confidence
Filtering

>

‘ Final Detections ‘

*However, it has large run-time complexity.



Proposed Solution - Adaptive Sliding Window

e Small objects requires fine-level information whereas large objects
can be detected at coarse-level.

Coarse Detector }—
Fine Detector }—

[ Detections ] [ Detections ]




Low Resolution Image

se = fp(zL;0))

Coarse Level Policy
Network (CPNet)

0 drop

4 sample

5 sample

15 drop

a. € {0,1

7Tc(a/cle; 0;) — p(a'c|33L; 0;)

*The goal is to learn zooming-in policies.



Coarse Level Policy
Network (CPNet)

1 i <

‘: Coarse Object Detector
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Low Resolution Image LR - 2
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Fine Object Detector
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Modeling the Policy Networks

Policy network treats sampling each
image patch as a Bernoulli variable.

Policy network is trained with policy
gradient method, with advantage
function.

Jc =K [Rc(a'm aq, Y)]
VogJe = E[Re - Vo log mog (acl1)



Experiments - xView

e Experiments on the xView dataset, consisting of 847 very large images
(>3000 x >3000 px).

Model/Metric HR AP AR Run-time HR §
Random (5x) 50 24.1 47.1 1408 31 =)
Entropy (5x) 50 254 472 1415 fi o
Sliding Window-L (5x) 0 263 39.8 640 0

Sliding Window-H 100 39.0 60.9 3200 100

Gao et al. [7] (5%) ¥4 352 53 151 31.6
Ours (5x) 35.5 38.1 59.7 1484 315

Table 1 : Results on the xView test set.

CPNet

Gao, Mingfei, Ruichi Yu, Ang Li, Vlad I. Morariu, and Larry S. Davis. "Dynamic zoom-in network for fast object detection in large
images." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6926-6935. 2018.



Experiments - Caltech Pedestrian

e Experiments on the Caltech Pedestrian dataset (>800 x >800 px).

A4 e B

Model/Metric AP AR Run-time HR
Random (x5) 30.9 62.1 248 44.4
Entropy (x5) 340 639 250 44.4
Sliding Window-L (x5) 212 46.3 90 0
Sliding Window-H 647 74.7 450 100
Gao et al. [7] (x2) 64.5 73.1 295 7 |
Gao et al. [[Z] (x5) 573 70.7 309 43.3
CPNet (x2) 644 745 267 6.6
CPNet (x5) 61.7 74.1 270 44.4

Table 2 : Results on the Caltech Pedestrian test set.




Thanks!

Questions?



Current Projects - Future Frame Prediction

Aerial Image

Predicting 29th Frame



Current Projects - Modality Selection with RL
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Analyzing Policy Network's Actions
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Experiments on fMoW

e \We use 350k, 50k, and 50k training, validation and test samples.

Acc. (%) g Acc. (%) S Acc. (%) S
(Pt) (Ft-1) (Ft-2)

LR-CNN 61.4 0 61.4 0 61.4 0
SRGAN [ '] 623 0 62.3 0 62.3 0
KD [37] 63.1 0 63.1 0 63.1 0
PCN [15] 63.5 0 63.5 0 63.5 0
HR-CNN 67.3 16 67.3 16 67.3 16
Fixed-H 47.7 7 63.3 6 64.9 6
Fixed-V 48.3 7 63.2 6 64.7 6
Stochastic 29.1 0 57.1 6 63.6 6
STN[!] 46.5 7 61.8 6 64.8 6
PatchDrop 534 7 671 59 683 52




Learned Patch Sampling Policies

Functional Map of the World
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Introduction to Efficient Object Detection

Most of the literature focuses on efficient box proposal techniques and
backbone architectures.
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*Efficient Box Proposal Techniques
*Efficient Backbone Architectures
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Detection in Large Images - Passing Full Image
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>1000 pixel

Needs large amount of memory to store large size feature maps.



>1000 pixels

Detection in Large Images - Using LR Image
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300 - 500 pixels

Downsampling loses spatial information — lower mAP and mAR

‘ Final Detections ‘



