Exploring Large-Scale Pre-training
for Satellite Images



Introduction

e Almost all of the state-of-the-art deep learning models rely on the following

framework.
o  Pre-train on ImageNet or another human labeled dataset.
o  Fine-tune on the target task.
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Learning from Instagram Images with Hashtags

e Mahajan et al. builds an image recognition dataset consisting of 3 billion
images from Instagram.
e They label the images using the hashtags given by the users.

e Two sets of labels are used:
o ImageNet labels (1k)
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e Pre-training improves the
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Fig. 1: Classification accuracy of ResNeXt-101 32x16d pretrained on IG-1B with dif-
ferent hashtag vocabularies (purple bars) on IN-{1k, 5k, 9k} (left) and CUB2011,
Places365 (right). Baseline models (gray bars) are trained on IN-{1k, 5k, 9k} (left)
and IN-1k (right), respectively. Full network finetuning is used. Higher is better.



Learning from Satellite Images using Wikipedia Articles

e Inits most recent dump, Wikipedia contains ~5 million articles (English) and
~1 million articles are geo-referenced.
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Scatter plot of the distribution of geo-tagged Wikipedia articles together with corresponding high
resolution images.



Pairing Articles to Images

Nelson Mandela Bridge

From Wikipedia, the ree encyclopedia Goordintos: (g 25.1967°S 28 0342'E

Not to be confused with Nelson Mandela Bridges.

@ “This artcle needs additional citations for verification. Please help this artile by . Unsourced material may be challenged and removed.
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Image Collection

e \We collect high resolution images from about 900k coordinates worldwide.
e Images come from DigitalGlobe satellites and no filtering is applied to remove
cloudy images.

e Grayscale images are kept and converted to RGB to add into our dataset.

Power Station




Representation Learning using Weak Supervision

Downstream Task
------------------------------------------------------------- > (fMoW, Poverty Prediction,
Object Detection, etc.)

,| Global | = |m
CNN [ 7] Pooling | [P @
55 \ 4

e 1024 Loss
“  Nelson Mandela Bridge Function

'|.> === From Wikipedia, the free encyciopedia | 3=
Weak A
' TiTmTmommmmmiy Coordinates: (g 26 wb/'sz é:mz E _) Label Bridge
— ———————— T — |

— L T L S o e e T e .
Nelson Mandela Bridge is a bridge in Johannesburg, South Africa. = Ext ractlo n
Rissik Bridge adjacent to the station. It was completed in 2003, and 3 s

rejuvenate and to a certain level modernise the inner city. (g




Post-processing the Weak Labels

e After the labeling step, we obtain labels from 98 fine-level classes.
e However, some labels such as culture, battle, event do not convey any

visual information.
e Additionally, we remove labels that are represented by less than 100 samples,

resulting in 85 remaining labels.
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Flipped and Adversarial Label Noise

Our crude method for labeling articles results in large amount of flipped and

Extracted Weak Label -> Town

adversarial label noise.

Extracted Weak Label -> County
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Representation Learning with Image to Text Matching

e OQOur crude method for labeling articles results in large amount of flipped and
adversarial label noise.

e Itis time-consuming and requires post-processing steps to reduce the label

noise and handle class imbalance problem.

o Merging labels results in class imbalance problem whereas not merging leads to large label
noise.

e Can we find a better way to learn representations using multi-modal data

without even extracting the weak labels?
o Image to Text Matching



Image to Text Matching (wang et al. PAMI19)

Embedding Network Similarity Network

, “afire pit”: +1
, “afire pit”: -1

FC layer

d( , “afire pit”) + m < d( , “a fire pit”)
d( m , “afire pit”) + m < d( , “campers”)

A group of eight campers sit around
a fire pit trying to roast marshmallows
on their sticks.
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Image to Text Matching for Unsupervised Learning
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Flipped Label Noise

Extracted Weak Label -> INCIDENT’

Iserbrook (ship)

Iserbrook was a general cargo and passenger brig built in 1853 at Hamburg
(Germany) for Joh. Ces. Godeffroy & Sohn. It spent over twenty years as an
immigrant and general cargo vessel, transporting passengers from Hamburg to
South Africa, Australia and Chile, as well as servicing its owner’s business in the
Pacific. Later on, the vessel came into Australian possession and continued sailing
for the Pacific trade. In 1878 it caught fire and was sunk the same year. At last, it was
re-floated and used as a transport barge and hulk in Sydney until it sunk again and
finally was blown up.

Construction and Description

The vessel was built for the Hamburg trading
company Joh. Ces. Godeffroy & Sohn. At the time,
the enterprise was operated by Johan César VI.
Godeffroy who had large trading interests in the
Pacific, focussing mainly on Copra, Coconut oil

and luxuries like pearlshell. In the 1850s and 60s, B T T

the company was also strongly associated with The 240 ton Brig Cesar & Helene was
i o B i built in 1855/56 in the Godeffroy
emigration from Germany to Australia, especially shipyard at the Reiherstieg wharf, This
to Adelaide and Brisbane. vessel was just 30 tones larger and built
one year after the Iserbrook for the

’ o ’ : y y same owners
Tn its arisinal Hamhnre resistration (Rielhrief).

*The word “Water’ is mentioned 10 times in the article.
*The word “Sea” is mentioned 11 times in the article
*The word “Port’ is mentioned 11 times in the article



Flipped Label Noise

Extracted Weak Label -> Event

North Queensland Cowboys

North Queensland Cowboys

-

Club information

The North Queensland Cowboys (Also
known as the North Queensland Toyota
Cowboys for sponsorship reasons) are an
Australian professional rugby league football
club based in Townsville, the largest city in
North Queensland. They compete in
Australia’s premier rugby league
competition, the National Rugby League
(NRL) premiership. Since their foundation
in 1995, the club has appeared in three grand
finals (2005, 2015 and 2017) winning in
2015, and has reached the finals ten times.
The team's management headquarters and
home ground, the Willows Sports Complex,
currently known as 1300SMILES Stadium
due to sponsorship rights, are located in the
Townsville suburb of Kirwan.

The Cowboys were admitted to the
premiership for the 1995 ARL season. They
played in the breakaway Super League
competition in 1997 before continuing to

*The word “Stadium” is mentioned 19 times in the article.

Full name

Nickname(s)

Colours

Founded
Website

Ground(s)

CEO
Coach

North Queensland Cowboys
Rugby League Football Club
Cowboys
Primary:

Navy

Grey
Secondary:

Yellow

White
30 November 1992
cowboys.com.au

Current details
Willows Sports Complex
(1300SMILES Stadium)
Townsville, Queensland
(26,500)
Jeff Reibel (acting)

Paul Green



Adversarial Label Noise

e Abig part of the Wikipedia dataset consist of images that are not visually different but labeled into
different categories such as city, country, populated place.

e Labeling satellite images are already difficult for humans. Doing crude labeling using the articles
introduces large amount of adversarial label noise.

e Image to text matching method basically softens the loss function that penalizes the network.



Reducing Adversarial Label Noise using Image2Text Matching

Adversarial Labels . . .
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What is CNN Learning with Image2Text Matching?
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Target Task- fMoW

e \We use the recently released functional map of the world (fMoW) dataset
consisting high resolution DigitalGlobe images.

e Itincludes 83k, 15k, and 15k unique bounding boxes across 62 classes from
the training, validation, and test sets.

e [t also provides temporal views from each area.

Instances per Category
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Single View Reasoning on fMoW
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Temporal Reasoning on fMoW

DenseNet121
, Full training set-350k samples
| WikiSatNet  WikiSatNet
: mnacl CIEERID:  Tmagehiet Weak Labels  Image2Text
Maximum F1 Score )
Likelihood (Singl View) 55.34 64.71 (%)  66.17 (%) 67.12 (%)
penseNeti21 i Fl Score 6045  68.73 (%) 71.31 (% 73.02 (%
Ltrzilia o) (Temporal Views) ' 13 (%) 21 (%) 02 (%)

DenseNet121




Target Task-Land Cover Classification

B s -

HEE II. 18

. -Train

WikiSatNet  WikiSatNet
Weak Labels  Image2Text
Top 1 Acc. 4201 (%) 40.11 (%)  46.16 (%) 47.65 (%)
Top 5 Acc. 7473 (%) 80.15(%)  88.66 (%) 88.77 (%)

Model CIFAR10 ImageNet




Target Task-Semantic Segmentation

e To quantify the learned representations on a different task, we use the
SpaceNet Semantic Segmentation dataset.

e Overall, there are 5000 and 2000 training and test images from the RIO
region for building class.



Architecture
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500 Samples 48.98 (%) 54.63 (%) 55.41 (%)
5000 Samples 57.21 (%) 59.63 (%) 59.74 (%)



Cloud-Free Image Generation using
Spatiotemporal Generative Networks



Introduction

e Clouds dominate satellite images as they can sometimes completely occlude
the region.

e Mostly, when analyzing satellite images we simply generate cloud masks of
the image, and discard the image.

e On the other hand, processing cloudy images with computer vision models
can lead to wrong ground information collection.

e In this study, we propose a Generative Adversarial Network to generate
cloud-free image conditioned on the cloudy images.



Framework to Build Paired Dataset

Download
Sentinel-2
Images
(10980x10980)

Use Cloud Mask
Detection

1st Run

2nd Run

No

Pair Collected?

Crop into 256x256 Crop into 256x256
Patches Patches
Cloud-Free Image Cloud Mask
Detection

Cloud-Free Image  Cloudy Image

Ignore



Building Paired Dataset using CycleGan

e At the end of first iteration, we collect 97640 cloudy or cloud-free image from

a point at time t.
e \We can use CycleGan to generate cloudy image given cloud-free image, and

vice versa.

L2 Loss L2 Loss
Gue ‘}1 ‘ Gas Gen _ Gee
e v % e
4' o %S W’ "4; o L
R -4 .4 y & ;
o~ e e Fake Image )
Re;l Imag(;‘ :?gi:;?fg Reconstructed Image i?\egl;l::iges in Domain A Reconstructed Image
in Domain J J
real or fake ? ﬂ real or fake ? —E\
. ,.T,‘. .
&f 4
°9~ R
Ve 4
Real Image Real Image
in Domain A

in Domain B



Visual Examples

CycleGan generated palrs Pairs from real dataset
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Collecting Spatiotemporal Dataset

e To build a spatiotemporal dataset, we simply collect images from the same
points at the previous time periods until we find three cloudy and one
cloud-free image from the same area.

iﬂ!ﬂiﬁ!@

Real
Cloud-Free
Pair



Spatial-only and Spatiotemporal Methods

Real Clear
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Pix2Pix for Paired Spatial-only Dataset

Positive examples Negative examples
Real or fake pair? Real or fake pair?
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Spatiotemporal GANs - (STGAN-Branched U-Net)

-----------------------------------
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Spatiotemporal GANs - (STGAN-Branched ResNet)

Loss Function :

ECGAN(Gt, Ds) = Emn,y[lOgDs (:c”,y)]+
Ezg,z[log(l — D" (a/,n, Gt(.’Ei, Z))]

L11(G") =By 2(lly — G*(2f, 2)|l1]
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The architecture of Encoder and Decoder
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Results

Results on Spatial-only Dataset

Validation Set Test Set
Models PSNR SSIM PSNR SSIM
Pix2Pix
P 23.130 0.442  22.894 0.437
Pix2Pix
(Synthetic Pairsy 21067 04342 20886 0.429
Cloudy Images ¢ 2/ 1396 8778 0398

(Unprocessed)

Results on Spatiotemporal Dataset

Validation Set Test Set
Models PSNR SSIM PSNR SSIM
Pix2Pix
(Real Paits) 23.130 0.442 22.894 0437
Mean Filter 16.962 0.174 16.893 0.173
Median Filter 9.081 0.357 9.674 0.395
STGAN-Stacked 1 953 506 25163 0.538
U-Net
STGAN-Stacked 1 »61 0497 24771 0520
ResNet
STGAN-Branched
U-Net (D) 25.879 0.502 26.150 0.533
STGAN-Branched
ResNet (D) 25.519 0.550 26.000 0.573
STGAN-Branched
U-Net (I) 25.484 0.534 25.822 0.564
STGAN-Branched
ResNet (I) 26.373 0.475 26940 0.496
Cloudy Images  , g,¢ (389 g289 (0422

(Unprocessed)




Visual Results
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PatchDrop: Dynamic Image Masking
using Reinforcement Learning



Motivation

High Resolution Image - Patches only Sampled from Semantically Meaningful Points

Low Resolution Image
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PatchDrop - An Adaptive Patch Sampling Framework

Do we need all the patches in an image to infer correct decisions?

o “ " “ .

92.3% 91.1% 88.4% 46.3%

Can we design a conditional patch dropping strategy?



Modeling the Agent
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PatchDrop
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Modeling the Agent and Reward Function

e The agent is trained using the predictions from the classification model.

ey o
R(u) = 1 (P) ify=y
—0 Otherwise
P
7(ulz,0) = H 8% (1 —s.™")
p=1
J = Eyr,[R(u)]

VuJ = E[R(u)V logr,(u|z)]

P
Vo = E[R(u)V.log [] st (1 — s37%)]

p=1

P
(1) V,J = E[AV log [] s (1 - s}~%)]

(2)

(3)

(4)

(5)

p=1

A = R(u) — R(4)
if s%>05 u,=1

s;r = asy? + (1 —a)(1 —s,7)



Pre-training the Agent

32x32

ResNet8

Agent

OO

- WNh =+ O

A

o |

\

14
15
16

ResNet32

Y

Classifier

*First, the classifier is trained
on 32x32 original CIFAR10
images. It achieves 92.3% on
test.

*Next, the agent is trained on
8x8 low resolution images.

*Curriculum learning is applied
to stabilize training.



Joint Fine-tuning

8x8

- WwNhNh = O

ResNet8

A

Agent

14
15
16

ResNet32

32x32

Y

pay

Classifier

A

*The pre-trained agent is used
to drop patches from the
original image.

*The classifier is then trained
Jointly with the agent.



Training on CIFAR10
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Baseline Models - Fixed Policy

Central P-1 =9 7 Central P-1l =9 Random P=9




Baseline Models - Activation Maps

Low Resolution Image (8x8)

High Resolution Image (32x32)

\ 4

Upsample
by 4

Sum the absolute value of
feature maps (8x8)

Patch Sampling

Classifier

—_—
Car




Results on CIFAR10

Central P-l
Central P-lI
Random P
Activation Map
Ours

NoDrop

Accuracy (%)
(Pre-training)

71.2
64.7
40.6+1.2
68.6
80.6

N/A

8.5

N/A

Accuracy (%)
(Joint Fine-tuning)

88.8
88.4
88.170.4
85.2
92.0

92.3

7.8

16



PatchDrop - Visualizing Agent’s Output
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